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ABSTRACT 
In this paper, the robust stabilization for a class of nonlinear systems with unknown parameters and uncertain actuator 

nonlinearities is investigated. Based on differential and integral inequalities, a simple linear control is offered to realize the global 

exponential stabilization of such uncertain systems. Besides, the guaranteed exponential decay rate can be correctly calculated. 

Finally, several numerical simulation results will be provided to demonstrate the correctness and effectiveness of the main results. 
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1. INTRODUCTION 
As we know, there are more or less uncertain factors in real physical systems. These uncertainties may come from unknown 

noise, incomplete models, or uncertain system parameters. If these uncertain factors are not taken into account, the designed 

controller often cannot achieve the expected goal, and even cause system instability or oscillation. Furthermore, if these uncertain 

factors are considered, the design of the controller becomes extremely difficult because the model is too complex.  

In recent years, the design of robust controllers for uncertain systems has been explored and proposed by many researchers; 

see, for example, [1]-[10] and the references therein. Various methodologies in the robust control have been proposed, such as 

Lyapunov approach, adaptive control, linear matrix inequalities, variable structure control, fuzzy adaptive control design strategy, 

and others.  

This paper considers the problem of controller design for a class of nonlinear systems with both unknown parameters and 

uncertain actuators. Using differential and integral inequalities, a simple hardware-implemented linear controller is designed to 

promote such uncertain systems to achieve the global exponential stability. Meanwhile, the guaranteed exponential decay rate can 

be correctly calculated. Finally, several numerical simulation results will be provided to show the correctness and effectiveness of 

the main theorem. Throughout this paper, a  denotes the modulus of a real number a and x  denotes the Euclidean norm of 

the vector 
nx  . 

 

2. PROBLEM FORMULATION AND MAIN RESULTS 
Consider the following uncertain nonlinear systems with unknown parameters and uncertain actuator nonlinearities 

described by 

     432112111 ,,, xxxxfxtdxtax  , (1a) 

           uxxxxfxtdxtdxtdxtdx  43212453423122 ,,, , (1b) 

     432133263 ,,, xxxxfxtbxtdx  , (1c) 

      0,,,, 432144274  txxxxfxtcxtdx , (1d) 
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where            14

4321: 
T

txtxtxtxtx  is the state vector, u  is the control input,      ,,, tctbta   

and  tdi  are unknown time-varying parameters, if  is nonlinear term with    4,3,2,1,00,0,0,0  ifi , and the 

operator of     :u , is the uncertain actuator nonlinearity. In addition, in order to ensure that the uncertain systems 

of (1) have solution, we assume that ,,, 321 fff  and 4f  are smooth functions. 

Throughout this paper, we make the following assumptions: 

(A1) There exist constants ,,,,,, ccbbaa  and id  such that 

    ,0,0  btbbataa  

     .7,6,5,4,3,2,1,,0  idtdctcc ii  

(A2) There exists a positive number 1r  such that uncertain actuator nonlinearity satisfies 

 uuur  2

1 . 

(A3)   0,,,
4

1

4321 
i

ii xxxxfx . 

 The definition of global exponential stabilization for the uncertain systems (1) is as follows. 

Definition 1: If there exist a control u and positive number   satisfying 

    0,0   textx t
, 

the uncertain system (1) is said to be globally exponentially stable. At the same time, the positive number   is called the 

exponential decay rate. 

 The purpose of this paper is to design a suitable control u to ensure global exponential stability of the system (1). 

Besides, we will figure out the exponential decay rate of the uncertain system. 

 Now we present the main result for the global exponential stabilization of uncertain systems (1) via differential and 

integral inequalities. 

Theorem 1: The uncertain systems (1) with (A1)-(A3) is globally exponentially stable under the following linear controller 

 2

1

34321 x
r

d
u













 



, (2a) 

where 

 
     

c

dd

b

dd
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dd
2

75
3

2
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2

21
1 ,,








  , (2b) 

with any 04  . In this case, the guaranteed exponential decay rate is calculated as 
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Proof: Let  

           txtxtxtxtxV 2

4

2

3

2

2

2

1:  . (4) 

The time derivative of   txV  along the trajectories of the closed-loop systems (1) with (2)-(3) and (A1)-(A3), is given by 

   44332211 2222 xxxxxxxxtxV    
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Hence, one has 

  .0,02 222  tVe
dt

d
VeVe ttt    

It results 

           .0,000
0

2

0

2   tdxVtxVedtxVe
d

d
t

t

t





 (5) 

From (4) and (5), it follows 

           .0,00
2222

  txexVetxVtx tt 
  

As a consequence, we conclude that 

    .0,0   txetx t
 

 

This completes the proof. □ 

Remark 1: It is worth mentioning that the proposed controller of (2) is not only a linear controller, but only a single controller can 

achieve the goal of global exponential stability. 

 

3. NUMERICAL SIMULATIONS 
 The following examples are presented to illustrate the usefulness of the proposed theoretical results. 

Example 1: Consider the uncertain systems (1) with 

  ,,3,5, 32

2

1442

2

1343

2

1243211 xxxfxxxfxxxfxxxxf   (6a) 

  ,7,6,5,4,3,2,1,1,4,2,3  idcba i  (6b) 

   0,1, 98

3

98  ddududu . (6c) 

By choosing the parameter 11 r , (A2) is obviously satisfied. From (2), we have 1,2,
3

4
321   . With the choice 

14  , from (2) and (3), it can be readily obtained that 2
3

19
xu


  and 1 . As a consequence, by Theorem 1, we 

conclude that the uncertain system (1) with (6) and the linear control 2
3

19
xu


  is globally exponentially stable. Furthermore, 

the guaranteed exponential decay rate is calculated as 1 . Typical state trajectories for the uncontrolled system and the 

feedback-controlled system are shown in Figure 1 and Figure 2, respectively. In addition, the control signal and electronic circuits 

to realize this control law are shown in Figure 3 and Figure 4, respectively. 

Example 2: Consider the uncertain systems (1) with 

 ,,,0 21331241 xxfxxfff   (7a) 

  6,5,4,3,1,2.0,1.2,12  idcba i  (7b) 
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   0,1, 98

3

98  ddududu . (7c) 

By choosing the parameter 11 r , (A2) is obviously satisfied. From (2), we have 245,9.1,1.102 321   . 

With the choice 14  , from (2) and (3), it can be readily obtained that 2351xu   and 15.0 . Consequently, by 

Theorem 1, we conclude that the uncertain system (1) with (7) and the linear control 2351xu   is globally exponentially 

stable. Furthermore, the guaranteed exponential decay rate is calculated as 15.0 . Typical state trajectories for the 

uncontrolled system and the feedback-controlled system are shown in Figure 5 and Figure 6, respectively. In addition, the control 

signal and electronic circuits to realize this control law are shown in Figure 7 and Figure 8, respectively. 

 

CONCLUSIONS 
In this paper, the robust stabilization for a class of nonlinear systems with unknown parameters and uncertain actuator 

nonlinearities has been explored. Based on differential and integral inequalities, a simple linear control has been offered to realize 

the global exponential stabilization of such uncertain systems. Besides, the guaranteed exponential decay rate can be correctly 

calculated. Finally, several numerical simulation results have been provided to show the correctness and effectiveness of the main 

results. 
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Figure 1: Typical state trajectories of the uncontrolled system of Example 1. 
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Figure 2: Typical state trajectories of the feedback-controlled system of Example 1. 
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Figure 3: Control signal of Example 1. 
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Figure 4: The diagram of implementation of Example 1, where ,31  kR
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Figure 5: Typical state trajectories of the uncontrolled system of Example 2. 
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Figure 6: Typical state trajectories of the feedback-controlled system of Example 2. 
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Figure 7: Control signal of Example 2. 
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Figure 8: The diagram of implementation of Example 2, where ,11  kR  .3512  kR  


