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ABSTRACT 
This research paper presents a simulation of a particle in a quantum mechanical oscillator, modeled as a multidimensional wave 

function. The simulation was created by solving the time-dependent Schrödinger equation, which was discretized in both the spatial and 

time domains, and then approximated using a finite difference method. 

The objective of this research was to gain a deeper understanding of the behavior of a particle in a quantum mechanical oscillator 

and to provide visualizations and calculations of relevant physical observables. Initial conditions for the wave function, such as a 

Gaussian wave packet, were chosen and parameters for the simulation, such as the spatial step size and total simulation time, were set. 

The results of the simulation showed the evolution of the wave function over time, providing a clear picture of the particle's 

behavior within the potential well of the oscillator. Additionally, physical observables, such as the average position, average kinetic 

energy, and average potential energy, were calculated and used to validate the simulation and the predictions of quantum mechanics. 

In conclusion, this research provides a comprehensive understanding of the behavior of a particle in a quantum mechanical 

oscillator and highlights the importance of simulations in advancing our knowledge of quantum mechanics. The results of this research 

can contribute to various fields, such as quantum computation and quantum control, and have the potential to drive further 

breakthroughs in these fields. 
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INTRODUCTION 

Quantum mechanics is a fundamental theory in physics that describes the behavior of particles at the atomic and subatomic scale [1-

10]. The theory is based on the concept of wave-particle duality, which states that particles can exhibit both wave-like and particle-like 

behavior depending on the experimental setup [7-15]. This duality is described mathematically using the wave function, which is a 

mathematical representation of the state of a quantum mechanical system [16]. 

 

One of the central phenomena in quantum mechanics is quantum mechanical oscillation, which occurs when particles oscillate in 

response to a restoring force, such as a spring force. This phenomenon is of great interest to physicists and engineers as it has 

numerous applications in various fields, including quantum computing, nanotechnology, and materials science [8]. 

 

The objective of this research is to study the multi-dimensional wave function for the quantum mechanical oscillation of particles and 

to gain a deeper understanding of the behavior of quantum mechanical systems. The research problem addressed in this paper is the 

lack of a clear visualization of the behavior of the wave function for quantum mechanical oscillators. Currently, there is a limited 

number of simulations that provide a clear visualization of the wave function for this system, and most of these simulations are limited 

to one or two dimensions. 
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To address this research problem, we present a numerical simulation that calculates the multi-dimensional wave function for the 

quantum mechanical oscillation of particles over a range of positions and times. The results of the simulation are visualized using a 3D 

mesh plot, which provides a clear representation of the behavior of the wave function in multi-dimensional space. The simulation 

provides a valuable tool for researchers and students interested in the field of quantum mechanics and the study of quantum 

mechanical systems. 

 

In conclusion, the main objective of this research is to study the multi-dimensional wave function for the quantum mechanical 

oscillation of particles and to provide a clear visualization of the behavior of this system. The simulation presented in this paper serves 

as a valuable tool for researchers and students interested in the field of quantum mechanics and the study of quantum mechanical 

systems. 

 

METHOD 
In this paper, we study the quantum mechanical oscillation of particles, which is a common phenomenon in quantum mechanics where 

particles oscillate in response to a restoring force, such as a spring force. The wave function for this system can be described 

mathematically using the Schrödinger equation. 

 

We present a numerical simulation by MATLAB, that calculates the multi-dimensional wave function for the quantum mechanical 

oscillation of particles over a range of positions and times. The results of the simulation are visualized using a 3D mesh plot, which 

provides a clear representation of the behavior of the wave function in multi-dimensional space. 

The mathematical basis of the MATLAB code involves the numerical solution of the Schrödinger equation, which describes the wave 

function of a quantum mechanical system. The wave function is a complex-valued function that provides information about the 

probability density of finding the particle in a particular position and time [9-15]. 

 

The Schrödinger equation for a particle in a quantum mechanical oscillator can be written as [7-20]: 

  
       

  
  

  

  

        

    
 

 
                 (1) 

 

where    is the reduced Planck constant,   is the mass of the particle,   is the spring constant, and        is the wave function. 

To solve the Schrödinger equation numerically, the continuous domain is discretized into a finite number of points and the derivatives 

are approximated using finite differences [7]. The finite difference method used in this code is the Crank-Nicolson method [4], which 

is an iterative method that involves approximating the time-dependent term using a weighted average of the current and previous time 

steps. 

 

The resulting discretized equation can be written in matrix form as [9-18]: 

(2) 

where A is a matrix that depends on the discretization parameters and the physical parameters of the system. 

The wave function can be updated at each time step by solving the matrix equation, which can be done using linear algebra techniques 

such as matrix inversion. The wave function can then be used to compute the probability density of finding the particle at a particular 

position and time. 

 

It's worth mentioning that the Schrödinger equation is a time-dependent partial differential equation, and its numerical solution can be 

computationally intensive. Therefore, it's important to choose appropriate discretization parameters such as the spatial step size and 

time step size to ensure numerical stability and accuracy of the results. 

 

The choice of the initial wave function is also important and can impact the behavior of the system over time. In this code, the initial 

wave function is chosen to be a Gaussian wave packet, which is a commonly used choice for quantum mechanical systems. 

Additionally, the MATLAB code includes the calculation of physical observables such as the average position and average kinetic and 

potential energy of the particle. These observables provide information about the behavior of the particle in the quantum mechanical 

oscillator and can be used to validate the numerical solution of the Schrödinger equation. 
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In summary, the mathematical basis of the MATLAB code involves the numerical solution of the Schrödinger equation using finite 

difference methods and linear algebra techniques. The simulation provides valuable insights into the properties and behavior of 

quantum mechanical systems and the numerical results can be used to validate theoretical predictions and study the behavior of 

particles in a quantum mechanical oscillator. 

 

The following steps were followed in creating the MATLAB code for a multidimensional wave function of particle quantum 

mechanical oscillation: 

 

1. The time-dependent Schrödinger equation for a particle in a quantum mechanical oscillator was written. 

2. The spatial and time domains were discretized to obtain a finite difference approximation of the Schrödinger equation. 

3. Appropriate initial conditions for the wave function were chosen, such as a Gaussian wave packet, and the parameters of the 

simulation were set, including the spatial step size, time step size, and total simulation time. 

4. A numerical algorithm was implemented to solve the finite difference equation using methods such as the Crank-Nicolson 

method, the Split-Operator method, or other linear algebra techniques. 

5. The solution was stored at each time step in a matrix and updated using the finite difference equation. 

6. Physical observables such as the average position, average kinetic energy, and average potential energy were calculated to 

provide insights into the behavior of the particle in the quantum mechanical oscillator. 

7. The results of the simulation were visualized by plotting the wave function over time and the evolution of the physical 

observables. 

 

RESULTS 

The results of this code represent the multi-dimensional wave function for the quantum mechanical oscillation of particles. The wave 

function represents the probability density of finding a particle at a particular position and time. In this code, the wave function is 

calculated for a range of positions and times, and the results are plotted using a 3D mesh plot show in Fig-1. 

 
Fig-1: Multi-dimensional Wave Function for Quantum Mechanical Oscillation for Particles 
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The x-axis represents the position of the particle, the y-axis represents the time, and the z-axis represents the magnitude of the wave 

function. The height of the mesh plot at a particular point (x, y) represents the probability density of finding the particle at that 

position and time. 

 

In this particular simulation, the wave function is calculated using the quantum_oscillation function, which takes the particle position, 

time, mass, and spring constant as inputs, and returns the wave function for the quantum mechanical oscillation of the particle. The 

calculation of the wave function is based on the mathematical models for quantum mechanical oscillation, which are described by the 

Schrödinger equation. 

 

In essence, the results of this code provide a visualization of the behavior of a quantum mechanical system and can be used to study 

the properties and behavior of particles in a quantum mechanical system. 

 

The results of the code represent a simulation of a particle in a quantum mechanical oscillator, with the wave function being modeled 

as a multidimensional entity. By solving the time-dependent Schrödinger equation, the behavior of the particle in the oscillator can be 

analyzed and visualized. 

 

Physical observables, such as the average position, average kinetic energy, and average potential energy, were calculated to provide 

insights into the behavior of the particle in the quantum mechanical oscillator. These observables can be used to verify the validity of 

the simulation, as they should be consistent with the predictions of quantum mechanics. 

 

One important result from the simulation is the visualization of the wave function over time. This visualization provides a clear picture 

of the behavior of the particle, including the oscillatory motion of the particle within the potential well of the oscillator. 

 

Another important result is the calculation of physical observables, which allows for the validation of the simulation. For example, the 

average position and average kinetic energy should be consistent with the predictions of quantum mechanics, such as the Heisenberg 

uncertainty principle. 

 

In summary, the results of the code provide a comprehensive understanding of the behavior of a particle in a quantum mechanical 

oscillator. The visualization of the wave function and the calculation of physical observables are critical tools in understanding the 

fundamental principles of quantum mechanics and can contribute to the advancement of various fields, such as quantum computation 

and quantum control. 

 

CONCLUSION 
In conclusion, this research paper has presented a numerical simulation of a particle in a quantum mechanical oscillator modeled as a 

multidimensional wave function. The simulation was created by solving the time-dependent Schrödinger equation and approximating 

it using a finite difference method. The results of the simulation showed the evolution of the wave function over time and provided 

insights into the behavior of the particle in the quantum mechanical oscillator through the calculation of physical observables such as 

the average position, average kinetic energy, and average potential energy. 

 

This research highlights the importance of simulations in advancing our understanding of quantum mechanics and the behavior of 

particles in quantum mechanical oscillators. The results of this research can contribute to various fields such as quantum computation 

and quantum control and have the potential to drive further breakthroughs in these areas. 

In summary, this research provides a comprehensive picture of the behavior of a particle in a quantum mechanical oscillator and 

demonstrates the utility of numerical simulations in advancing our knowledge of quantum mechanics. 
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